
Although Alzheimer disease (AD) is recognized as a pub-
lic health priority by the WHO1 and is expected to affect 
90 million people worldwide by 2050 (ref.2), the condition 
remains incurable and all clinical trials in AD conducted 
in the past decade have failed. Heterogeneity of disease 
manifestation and progression among patients has been 
identified as a critical issue in the current approach to 
developing new therapies for AD3,4. Therefore, char-
acterization of genetic, demographic and phenotypic 
traits that predict disease onset, prognosis and treatment 
response (exemplified by work in the oncology field5,6) 
is of growing interest in AD research. Phenotypic7,8 and 
genetic9 factors have been proposed as characteristics 
that can guide patient selection, stratification and clus-
tering for AD diagnosis and treatment. However, whether 
demographic variables such as sex should be considered 
in relation to AD phenotypic variability is unclear.
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Differences in brain structure10,11 and function12 
between men and women are emerging, as are effects 
of sex on the manifestation and progression of neuro-
logical conditions, such as ischaemic stroke13, Parkinson 
disease14 and migraine15. In a longitudinal study of >2,000 
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patients with Parkinson disease, sex accounted for 2.6% 
of the predictive information provided by a seven-​
factor clinical–genetic risk score for cognitive decline16. 
However, current discussion of sex differences in AD 
primarily focuses on epidemiological aspects (Box 1), 
with very little attention given to the role of sex in the 
clinical and neuropathological manifestations.

To address this knowledge gap, this Review — 
written on behalf of the Women’s Brain Project and 
the Alzheimer Precision Medicine Initiative (APMI; 
Supplementary Box 1) — provides the first comprehen-
sive overview of sex-​related differences in the pheno-
types of sporadic AD. The aims of the Review are to raise 
awareness of published evidence, to propose measures to 
increase the number and quality of studies in this field, 
and to highlight the importance of considering sex in 
preclinical and clinical studies in the context of a multi-
variate, precision medicine approach for AD17. Detailed 
discussion of sex differences in AD epidemiology are 
available elsewhere18–21. In this Review, we focus on sex 
differences in clinical manifestations, biomarker profiles, 
risk factors and treatment of patients with AD.
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sex-​specific patterns of disease manifestation as well as sex differences in the rates of cognitive 
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Clinical manifestations of AD
Sex differences in AD symptomatology have not been 
studied systematically. In the vast majority of reports 
of AD symptoms, data are not stratified by sex. The 
common practice of adjusting data by sex prevents 
the possibility of analysing the effects of sex in a given 
data set. However, over the past 20 years, numerous stud-
ies have identified differences between the sexes across 
the full spectrum of clinical manifestations of sporadic 
AD (Box 2) and throughout the continuum of disease, 
from preclinical AD to severe dementia (Supplementary 
Table 1). In this section, we provide a critical overview of 
these studies in relation to known sex differences in the 
non-​cognitively impaired (NCI) population.

AD-​related cognitive impairment
Sex differences in neuropsychological performance 
among NCI people have been extensively docu-
mented: women score more highly than men in 
verbal tasks at all ages12,22–24 and exhibit slower cog-
nitive decline12,25, even among the elderly population 

(average baseline age 64.1–69.7 years24). On the other 
hand, men score more highly in visuospatial and motor 
coordination tasks12,24,25.

Two studies have demonstrated that the higher per-
formance of women than men in the verbal memory 
domain among the NCI population is maintained in 
prodromal AD26,27. Both studies demonstrated that 
verbal memory is preserved in women with amnes-
tic mild cognitive impairment (aMCI) relative to that 
in men with the same diagnosis, despite comparable 
hippocampal atrophy26 and comparable temporal lobe 
glucose metabolic rates27. However, the sex difference 
in verbal memory tasks observed in NCI and at early 
stages of AD is not seen among patients with a diag-
nosis of dementia25,28. The majority of studies in which 
cognitive data were stratified by sex in AD dementia 
indicate that women score lower than men in verbal 
memory and fluency tasks, particularly confronta-
tion naming tasks, even after controlling for possible 
demographic and psychological confounders, such as 
age, education and depression22,29,30 (Supplementary 
Table 1). In early AD dementia, even a lack of sex dif-
ferences in memory performance, as observed in one 
study26, could indicate meaningful effects of sex, as this 
observation deviates from the findings in NCI people 
for that specific domain.

Rates of cognitive decline
Marked sex differences in the rates of progression 
have been consistently reported among individu-
als with aMCI recruited to the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) study: cognitive dete-
rioration is faster in women than men over 1 year31 
and becomes twice as fast over 8 years32 (even after 
normalization for apolipoprotein E (APOE) genotype; 
Supplementary Table 1). A study published in 2017, in 
which a multilayer clustering algorithm was used to 
analyse 5-year longitudinal data from the ADNI cohort, 
demonstrated that in a cluster of ‘fast progressors’, cog-
nitive decline was faster in women8. Similarly, a study 
published in 2015 showed that annual progression rates 
from aMCI and non-​amnestic MCI (naMCI) to AD 
dementia were 2–3% higher in women than in men in 
the French National Alzheimer Database33, irrespective 
of age and education level.

The faster cognitive decline observed in women 
could result from later diagnosis of AD in women than 
men. Indeed, a study published in 2014 showed women 
to have lower Mini-​Mental State Examination (MMSE) 
scores (indicating worse global cognitive status) than 
men at initial diagnosis of AD, even after adjustment 
for age and education level34. However, this possibility 
needs to be confirmed in further studies. Similarly, the 
biological underpinnings of the sex differences in cog-
nitive status and deterioration remain to be elucidated. 
Comorbidities such as cardiovascular and cerebrovas-
cular disease35, synaptic biology36, brain-​derived neu-
rotrophic factor levels37, and systemic38 and brain39,40 
immune responses are all affected by sex and could 
contribute to the observed effects, but no studies have 
investigated the role of these factors in the observed 
sex-​related differences in cognitive function and decline.

Key points

•	Men and women with Alzheimer disease (AD) exhibit different cognitive and 
psychiatric symptoms, and women show faster cognitive decline after diagnosis of 
MCI, dementia or AD.

•	Levels of amyloid-​β peptide measured with PET-​based brain imaging and biochemical 
analysis of cerebrospinal fluid do not differ between the sexes.

•	Brain atrophy rates and patterns differ along the AD continuum between the sexes; in 
mild cognitive impairment, brain atrophy is faster in women than in men.

•	The prevalence and effects of cerebrovascular, metabolic and socio-​economic risk 
factors for AD are different between men and women.

•	No data are available on sex differences in the efficacy and safety of drugs used in 
recently completed phase III clinical trials for mild to moderate AD.

•	Systematic studying and reporting of sex differences in disease symptomatology, 
biomarkers, progression, risk factors and treatment responses will be crucial for the 
development and implementation of precision medicine in AD.
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Behavioural symptoms of AD
Several sex differences in behavioural symptoms of AD 
have been reported, although many of these observa-
tions are based on single studies with limited sample 
sizes (Supplementary Table 2). The available evidence 
indicates that men who are diagnosed with AD are 
more likely than women to exhibit apathy41, agitation42 
and abusive and socially inappropriate behaviour41,43,44, 
whereas women more often present with depressive 
symptoms45, reclusiveness41, emotional lability41, delu-
sions46, and affective and manic symptoms47. In a study 
of neuropsychiatric symptoms among 1,120 individuals 
with sporadic AD, behavioural dysfunction and mood 
component scores were worse in women than in men48. 
Nevertheless, women with AD seem to score equally to49 
or more highly than30 men on functional independence 
scales. However, women with AD dementia experience 
a partial loss of independence earlier in the disease 
course than men49, so spend a greater proportion of their 
remaining lives with dependence and extensive disabil-
ities. Additional studies with larger cohorts are required 
to confirm the observed sex differences in behavioural 
symptoms.

Biomarker patterns in AD
Cognitive and behavioural impairments in AD are 
paralleled by specific and progressive neuropatho-
logical changes in the brain that precede the onset 
of detectable clinical symptoms by years to decades 
(Box 3). Differences in AD biomarkers between the 
sexes are starting to be explored systematically thanks 
to large, international, collaborative initiatives, such 
as the ADNI, the Australian Imaging, Biomarkers & 
Lifestyle Flagship Study of Ageing (AIBL) and the 
Harvard Aging Brain Study (HABS). However, in 
many studies of biomarkers, results are adjusted for 

age and sex, thereby hindering examination of sex 
differences.

In this section, we review the available evidence for 
sex differences in the absolute levels of diagnostic bio-
markers (amyloid-​β (Aβ) and tau) and markers of dis-
ease progression (brain atrophy) and in the relationship 
between biomarker status and clinical manifestations of 
AD (Supplementary Tables 2,3).

Amyloid-​β burden
Sex differences in Aβ burden in NCI elderly individ-
uals are controversial. Some studies have indicated 
no sex differences at all23,50. One study has demon-
strated slightly higher uptake of Pittsburgh com-
pound B (PiB) in men than women51, but two other 
reports have indicated higher PiB uptake in women 
than men52,53. The discrepancies between publications 
could be the result of differences in study designs, sam-
ple sizes and ages of individuals included in the study 
(Supplementary Table 2).

In mild cognitive impairment (MCI) and AD, no 
clear sex differences in Aβ burden have been reported. 
Post-​mortem studies conducted in the past 15 years 
have indicated no clear sex differences in the occur-
rence or distribution of Aβ plaques in the hippocampi 
and neocortices of patients with AD54; one study indi-
cated a higher degree of cerebral amyloid angiopathy in 
men than in women55. Similarly, sex seems to have no 
impact on cerebrospinal fluid (CSF) concentrations of 
Aβ1–42 i




n living patients with AD dementia, people with 

prodromal AD or NCI individuals31,56. Furthermore, 
a meta-​analysis of PET studies revealed no sex differ-
ences in amyloid positivity among individuals with 
subjective cognitive impairment, aMCI or naMCI57. 
A similar meta-​analysis to investigate sex differences 
in Aβ burden in patients with AD is, to our knowledge, 
currently lacking.

Tau burden
The vast majority of post-​mortem pathological stud-
ies of brains from patients with AD have not indicated 
any effect of sex on the global burden of neurofibrillary 
tangles or tau hyperphosphorylation. Individual reports 
have indicated possible effects in specific brain regions: 
higher numbers of neurofibrillary tangles have been 
found in women with AD than in men in certain cor-
tical areas, including the midfrontal, superior temporal, 
entorhinal and inferior parietal cortices54 and the nucleus 
basalis of Meynert58, but these results require replication.

Studies of tau accumulation via CSF analysis and 
PET imaging in living patients have produced similar 
findings. In a study published in 2017, sex had no impact 
on CSF tau concentrations in patients with AD demen-
tia, people with prodromal AD or NCI individuals56. 
Another study indicated higher tau concentrations in 
women than in men with (undefined) MCI, but the 
trend was not significant (P = 0.06)31. PET studies have 
also indicated no sex differences in tau accumulation 
in ageing and early AD50,59. However, data from several 
other studies in patients were not stratified by sex, so 
knowledge of sex-​dependent tau accumulation and 
spreading in patients with AD is limited.

Q3

Box 1 | Sex differences in Alzheimer disease epidemiology

A substantially larger number of women than men have Alzheimer disease (AD) 
worldwide (2:1 women:men ratio103,148). However, whether epidemiological indicators 
of burden and risk (such as prevalence and incidence) are affected by sex is a subject 
of intense debate. Analysis of the prevalence of AD by sex (that is, the number of 
women affected divided by the total number of women in the population) reveals 
that the prevalence of AD among women is significantly greater than that among 
men in some but not all geographical regions2. Although the effect is significant, 	
it is moderate and mostly driven by a higher prevalence of AD among older women 
than older men. Furthermore, the difference seems to be influenced by secular 
trends, and prevalence in older old women is lower in the most recent reports21. 
Sex differences in the incidence of AD are also affected by geographical region and 
historical time of analysis; evidence for a higher incidence of AD in women in the 
USA is limited149, but the 10/66 Dementia Research Group




 study of dementia in 

low-​income and middle-​income countries did demonstrate higher incidence 
in women101. These results suggest that socio-​economic factors, such as education 
and occupation, rather than biological mechanisms are at play in determining overall 
AD risk20,21.
On the basis of these controversial results, a commonly held view is that the observed 

sex differences in AD frequency are largely explained by the longer life expectancy of 
women, even after diagnosis of AD, than of men, and by the selective survival of men 
with the best cardiovascular health into old age92. This view is supported by the fact 
that mild cognitive impairment, which occurs at younger ages than AD, is more 
prevalent among men150. However, this viewpoint remains controversial and is the 
subject of several high-​quality reviews18–21,151.

Q2
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Brain atrophy and atrophic rates
Among the NCI population, elderly men exhibit greater 
age-​related atrophy in frontal, parietal and temporal 
regions23, and lower cortical thickness in AD signature 
areas53, particularly temporal areas50. However, studies 
of absolute brain volume in patients with AD dementia 
(Supplementary Table 3) have produced inconsistent 
findings: lower hippocampal volume has been reported 
in men26 and in women60. These inconsistencies could 
be due to the method used for brain volume normaliza-
tion: intracranial volume is larger in men than women, 
so volumetric measurements that are normalized to 
intracranial volumes can be skewed61. In future studies, 
quantification of cortical thickness, which is independ-
ent of intracranial volume, could help to clarify the role 
of sex in AD-​related atrophy.

In contrast to the volumetric findings, sex differences 
in atrophy rates in several brain regions have been demon-
strated at all clinical stages (NCI, undefined MCI and 
AD dementia)31,62. The ADNI study63 and the Minimal 
Interval Resonance Imaging in Alzheimer Disease 
(MIRIAD) study64 determined that atrophy rates were 
faster by 1–1.5% per year in women with aMCI and AD 
dementia than in men (Fig. 1; Supplementary Table 3).

Relationship between neuropathology and clinical 
symptoms
In a seminal paper, Barnes et al.54 reported in 2005 
that each additional unit of AD pathology (calculated 
as a global measure of the burden of neuritic plaques, 
diffuse plaques and neurofibrillary tangles across four 
brain regions) was associated with a >20-fold increase 
in the odds of dementia in women but only a 3-fold 

increase in men. Importantly, the difference was 
unlikely to be due to unequal occurrence of cerebro-
vascular events between the sexes because normaliza-
tion of data to the number of cerebral infarcts did not 
affect the results54.

In concurrence with these findings, analysis of longi-
tudinal data from the ADNI cohort found a significant 
interaction of sex with CSF levels of AD biomarkers in 
relation to the development of neurodegeneration and 
dementia at follow-​up (0–9 years)65. In this study, female 
sex was associated with greater hippocampal atrophy 
and faster cognitive decline in the presence of AD bio-
markers (CSF levels of Aβ42 and total tau) than was 
male sex, particularly among patients with (undefined) 
MCI65. Similarly, a study published in 2017 showed that, 
among patients with aMCI who were classified as fast 
progressors (identified with a multilayer clustering algo-
rithm), progression rates were higher in women than in 
men, even when levels of diagnostic biomarkers were 
similar8. Whether the prognostic values of specific 
biomarkers are modulated by sex66 deserves further 
investigation.

Risk factors for AD
Prevalence of risk factors
Research conducted in the past decade indicates that, 
although the prevalence of cardiovascular risk factors 
and cerebrovascular events (such as hypertension, hyper-
lipidaemia, diabetes, stroke and microinfarcts) is higher 
overall in men than in women under the age of 60 years, 
this prevalence is equal or even higher among women 
after menopause or older than 60 years13,67–69. Depression 
and sleep disorders — both risk factors for AD — are 
also known to be more prevalent in women70,71.

Modulation of individual risk factors
Studies indicate that sex can modulate not only the prev-
alence of risk factors for AD but also the susceptibility to 
AD conferred by a given risk factor. Below, we discuss 
the evidence for three of these risk factors for which the  
evidence of sex differences is most robust: APOE 
genotype, vascular risk factors and depression.

APOE genotype. Some evidence has suggested that sex 
can change the risk conferred by the APOE*ε4 allele: the 
risk of AD onset or conversion from MCI was reported 
to be higher among women carriers than among men 
carriers72–74. A highly powered, global meta-​analysis 
published in 2017 that included >50,000 individuals has 
refined these observations75. An increased incidence 
of MCI or AD in female APOE*ε4 carriers was found 
only in younger age brackets (55–70 years for MCI and 
65–75 years for AD), suggesting an early susceptibility 
of women carriers. Hormonal and metabolic alterations 
that occur early in menopause76, which immediately 
precedes the risk age, could explain this age-​specific 
effect, although this hypothesis has not been inves-
tigated. Additional studies are needed to elucidate 
whether perimenopausal changes interact with APOE 
genotype to affect AD risk.

Interactions between sex and APOE genotype have 
been observed in NCI individuals: impaired episodic 

Box 2 | Definition of Alzheimer disease

In this Review, the term ‘Alzheimer disease’ (AD) refers to the entire pathological 
continuum from initial, asymptomatic degenerative changes in the brain to frank, overt 
dementia, as proposed by the revised International Working Group (IWG-2) criteria152. 
In addition to cognitive deficits, neuropsychiatric and behavioural symptoms (including 
depression, psychosis, apathy, wandering and agitation) and loss of functional 
independence are also clinical manifestations of the AD continuum153,154.
We refer to three stages of sporadic AD:

Preclinical AD
The asymptomatic stage that precedes the development of cognitive impairments 	
(clinical stage) but is characterized by at least one in vivo biomarker of AD neuropathology.

Prodromal AD
The symptomatic phase of AD before dementia, in which amnestic syndrome of the 
hippocampal type is present, but instrumental activities of daily living are not affected 
and a diagnosis of dementia is not required. Although similar to the construct of 
amnestic mild cognitive impairment155, diagnosis of prodromal AD requires in vivo 
biomarker evidence of AD pathological changes in the brain.

AD dementia
A dementia syndrome that comprises an amnestic syndrome of the hippocampal type 
in the presence of in vivo biomarkers indicative of AD neuropathology.
In the absence of a positive biomarker-​based diagnosis of AD, we refer to AD 

dementia or mild cognitive impairment (MCI), following the nomenclature used by the 
authors. Amnestic MCI is characterized by memory dysfunction, and non-​amnestic 
MCI (naMCI) refers to conditions characterized by deficits in other cognitive 
domains155. If the MCI subtype is not indicated in the study, we refer to it as 
‘undefined’. The diagnostic criteria used in each paper are indicated in Supplementary 
Tables 1–3.
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memory77, decreased default-​mode network activity78, 
decreased hippocampal connectivity79 and increased 
hypometabolism and atrophy have been observed 
in women carriers of APOE*ε4 compared with age-​
matched men carriers80. In addition, greater hippocam-
pal atrophy has been observed in female APOE*ε4 
carriers with MCI than in male carriers with MCI77. 
Given that no sex differences in Aβ load have been estab-
lished23, the increased risk of AD in female APOE*ε4 
carriers could be explained by an increased sensitiv-
ity to Aβ or it could be the result of Aβ-​independent 
mechanisms; these possibilities need to be tested.

Vascular risk factors. Whether cognitive decline and 
the risk of AD are affected by an interaction of sex with 
cerebrovascular pathology (such as subcortical leukoen-
cephalopathy, lacunar infarcts, ischaemic and haemor-
rhagic strokes and leukoaraiosis) and cardiovascular risk 
factors (including hypertension, metabolic syndrome, 
insulin resistance, hyperhomocysteinaemia, hyper-
lipidaemia, chronic inflammatory diseases, vitamin 
D deficiency, alcohol consumption and smoking) has 
not been systematically investigated, but several stud-
ies on the topic have been published. As an example, 
a landmark study showed that brain infarcts lowered 
the threshold for dementia in elderly women with AD 
pathology compared with age-​matched women with no 
AD pathology81, but whether the interaction between 
brain infarcts and dementia is seen to the same extent in 
men and women is unclear. Further examination of the 
effect of cerebrovascular pathology (white matter hyper-
intensities and brain infarcts) and amyloid pathology 
(assessed with PiB–PET) on the risk of cognitive decline 
in a population of elderly NCI individuals showed that 
vascular and amyloid pathologies have an additive 
effect on cognitive decline82. Stratification of data by sex 
revealed similar patterns of decline in men and women 
with both pathologies; sex differences in the risk of MCI 
or dementia progression were not examined. Given the 
small subset of subjects with both vascular and amyloid 

pathology stratified by sex (19 women and 26 men), a 
firm conclusion cannot be drawn about sex differences 
in the impact of cerebrovascular and amyloid pathol-
ogies on cognition and dementia, warranting future 
studies82. For cardiovascular factors, in mixed cohorts, 
a greater risk of aMCI and multiple-​domain aMCI was 
found among men with type 2 diabetes mellitus than 
among women with the same condition83. In a study 
published in 2017, onset of or established hypertension 
in midlife was estimated to increase the risk of dementia 
among women only, although midlife hypertension was 
more prevalent among men84.

One study has shown that the first manifestation 
of cardiovascular disease differs between men and 
women35, which could differentially influence the risk 
of AD. This study showed that men were more likely 
than women to develop coronary heart disease as their 
first cardiovascular event over a follow-​up period of  
20 years, whereas women were more likely to develop cer-
ebrovascular diseases (stroke, transient ischaemic attack 
or carotid revascularization) and heart failure as their 
first manifestation35. Given the evidence that vascular 
disease contributes to cognitive impairment and the risk 
of AD85,86, sex differences in the burden and manifesta-
tions of cardiovascular and cerebrovascular risk factors, 
and their impact on AD, deserve further investigation. 
Several aspects remain particularly unclear: whether 
the occurrence of vascular risk factors and vascular 
brain pathology throughout the AD continuum differs 
between men and women; whether the additive effects 
of vascular and AD pathologies have different impacts 
on the risk of AD between the sexes; and whether sex 
differences in the effects of vascular factors on the risk 
of AD are due to higher mortality among males than 
females with these risk factors or whether genetic and/or 
hormonal differences could play a role.

Depression. Studies have demonstrated that the risk 
of MCI87 or conversion from (undefined) MCI to AD 
is higher among women with depression than among 
men with depression74,87. In a study published in 2017, 
mild depressive symptoms were associated with a two-
fold greater risk of aMCI in men but no increase in risk 
in women, whereas moderate or severe symptoms were 
associated with a twofold greater risk of aMCI in women 
but no increased risk in men88. Given that depression is 
more prevalent and severe among women70, careful con-
sideration must be given to these results. In particular, 
the smaller size of patient groups of men with depression 
than that of groups of women with depression might 
reduce the chances of identifying correlations between 
depression and AD in men because of insufficient 
statistical power.

Risk factor profiles and predictors
Sex differences in the prevalence of and susceptibility 
to AD that result from individual risk factors might 
result in sex-​specific risk factor profiles and predic-
tors. Indeed, the Mayo Clinic Study of Ageing (MCSA) 
has revealed sex-​specific predictors of short-​term 
conversion (median 5 years) from normal cognition 
to (undefined) MCI: smoking, midlife dyslipidaemia, 

Box 3 | Biomarkers of Alzheimer disease

In vivo measurements of amyloid-​β (Aβ) load (via PET 
using the tracers Pittsburgh compound B, florbetapir, 
florbetaben or flutemetamol) and cerebrospinal fluid 
biochemical analysis (measurements of Aβ, total tau and 
phosphorylated tau concentrations) are considered to be 
core diagnostic biomarkers of Alzheimer disease (AD) 
pathology according to the revised International 
Working Group (IWG-2) criteria152. Emerging tau PET 
tracers are being developed in clinical research156. 	
By contrast, downstream topographical biomarkers such 
as hippocampal and basal forebrain nuclei atrophy 
(measured with structural MRI) and cortical 
hypometabolism (measured using FDG–PET) are 
categorized as markers of disease progression152 as they 
closely correlate with worsening of cognitive 
performance but lack pathological specificity for AD. 	
In 2018, both the FDA157 and the European Medicines 
Agency158 endorsed the use of biomarkers for the 
diagnosis of AD and the monitoring of drug effects in 
clinical trials.
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diabetes mellitus and hypertension were specific pre-
dictors for women, whereas obesity and marital status 
were specific predictors for men89. Stroke, atrial fibrilla-
tion, a history of alcohol abuse, a low level of education 
and self-​reported memory concerns were confirmed 
as equal predictors of AD in both men and women89. 
Similarly, in the Clinical Research Center for Dementia 
of South Korea (CREDOS) cohort, depression in com-
bination with older age and the APOE*ε4 allele was a 
risk factor for conversion from MCI to AD dementia 
specific to women; severe periventricular white matter 
hyperintensities and poorer global cognitive function 
were risk factors for conversion of (undefined) MCI to 
AD dementia specific to men74. In a multicentre pro-
spective study of brain ageing conducted in France, 
men with (undefined) MCI were more likely than 
women to have a higher BMI, diabetes mellitus and 
stroke; women with MCI were more likely than men to 
have poor subjective health, disability and insomnia90. 
For men, the principal adjusted risk factors for progres-
sion to dementia were APOE*ε4 allele, followed by a 
low level of education and loss of instrumental activities 
of daily living. For women, progression was best pre-
dicted by loss of instrumental activities of daily living, 
followed by the APOE*ε4 allele, a low level of education, 
subclinical depression and the use of anticholinergic 
drugs90. In the Cache County Study, cardiovascular risk 
factors for vascular and AD dementia were found to 
significantly interact with sex; in particular, obesity was 
a female-​specific risk factor for incident AD dementia 
at a 3-year follow-​up91. On the basis of these published 
reports, AD risk factors seem to interact with sex dif-
ferently according to the stage of the AD continuum 
examined (for example, conversion from NCI to MCI or 
AD, and conversion from MCI to AD); however, more 

data from larger data sets of fully characterized patients 
will be needed to confirm this possibility.

Sex-​specific risk factor profiles could arise as a result 
of selective survival, whereby men are more likely than 
women to die from cardiovascular disease in midlife; 
therefore, those who survive to an older age are likely 
to have a healthier vascular system than women92. As 
a result, aged men and aged women might represent 
separate subgroups of patients with specific risk factor 
profiles that necessitate differential prevention strategies 
and treatment.

Female-​specific risk factors
Some evidence suggests that conditions related to preg-
nancy and menopause are female-​specific risk factors for 
AD. Pre-​eclampsia has been associated with higher risks 
of cardiovascular disease93, cognitive impairment later 
in life94 and protein misfolding with defective amyloid 
processing95, although the link between pre-​eclampsia 
and AD has not been thoroughly investigated. Higher 
risks of cognitive decline96,97 and dementia96 and higher 
levels of AD neuropathology97 have been associated 
with early, surgically induced menopause, indicating 
that menopause before the age of 40–45 (as a result of 
ovarian removal, chemotherapy, aromatase inhibitor 
treatment or premature ovarian insufficiency) represents 
a female-​specific risk factor for AD dementia. Whether 
additional pregnancy-​related hypertensive disorders, 
such as HELLP syndrome (haemolysis, elevated liver 
enzymes and low platelet count), are female-​specific risk 
factors for AD remains to be elucidated.

Gender-​related risk factors
Socio-​economic risk factors for dementia and AD are 
known to vary according to gender98 (which differs from 
sex; Box 4); for example, in most cultures, a low income 
and a low level of education are more common among 
women than men29,53,99,100. Another risk factor more 
commonly associated with women than men is being 
a primary informal caregiver; 75% of unpaid caregiv-
ers for people with chronic debilitating diseases such as 
dementia are women101. The caregiving burden is associ-
ated with lower rates of employment99 and an increased 
prevalence of psychological AD risk factors, such as 
sleep disorders and depression, in women caregivers 
compared with men caregivers102,103. Furthermore, com-
pared with men who are caregivers, women caregivers 
tend to report a higher caregiver burden, and greater 
caregiver-​related role conflict, strain and psychological 
morbidity102,104.

Another gender-​related factor is that older women 
are more likely than older men to live alone105, often 
because of their longer lifespan. This difference might 
make enrolment and retention of women in trials 
more difficult, as they might lack a representative who 
can provide informed consent on their behalf, a prob-
lem that has been identified in the field of stroke13. 
Indeed, in the recently completed phase III trials of the 
γ-​secretase inhibitor semagacestat106, the β-​secretase 
inhibitor verubecestat107 and the anti-​Aβ monoclonal 
antibodies solanezumab108 and bapineuzumab109, ~50% 
of participants were women, which does not reflect the 

Fig. 1 | Brain atrophy in women and men with amnestic mild cognitive 
impairment. The maps represent average atrophy rates in individuals with amnestic 
mild cognitive impairment (aMCI) over a 1-year period. MRI data were collected  
from the Alzheimer’s Disease Neuroimaging Initiative cohort and analysed with 
tensor-​based morphometry. Results are stratified by age ranges and sex. Faster atrophy 
(darker blue) was observed in women than in men. Biomarker-​based evidence of 
prodromal Alzheimer disease was not available in this study. Modified with permission 
from ref.63, Elsevier.
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epidemiology of the disease: 60–70% of people affected 
are women. A gender difference in enrolment and reten-
tion in clinical trials might signal a more widespread 
gender inequality in the care offered; indeed, in the 
Swedish Dementia Registry




, women were less likely than 

men to receive lumbar punctures and MRI, an effect that 
was mostly driven by their higher age110. Such gender 
differences in the management of AD deserve careful 
consideration.

Treatment
Safety and efficacy data from randomized clinical tri-
als of cholinesterase inhibitors and other interventions 
for dementia have not been systematically analysed by 
sex. Therefore, whether sex has specific roles in drug 
responses, the occurrence of adverse events or the 
modulation of genetic influences on treatment out-
comes remains to be elucidated. Furthermore, sex is 
rarely considered during preclinical drug development, 
although several sex differences have been observed in 
animal models of AD (Box 5). In this section, we dis-
cuss the limited evidence for potential sex differences 
in AD treatment.

Cholinesterase inhibitors
In one study, rivastigmine treatment in the prodromal 
stages of AD delayed progression from MCI to AD 
only in women111, suggesting a specific benefit of early 
treatment in women. However, in advanced dementia, 
preclinical studies and clinical studies of treatment with 
cholinesterase inhibitors have indicated a stronger and 
more selective benefit for males112–116; only one study 

Q4

demonstrated greater efficacy in women117. Nevertheless, 
in another study, survival times after treatment were 
longer for women than men, suggesting that the sex dif-
ferences associated with the anti-​dementia effects of cho-
linesterase inhibitors are distinct from those associated 
with their effects on survival118. The observed sex dif-
ferences might be due to sexual dimorphism of the cho-
linergic system119 or to a greater susceptibility of female 
cholinergic neurons to AD pathology58,120. Furthermore, 
specific interactions of cholinesterase inhibitors with sex 
hormones121,122, limbic and/or hypothalamic activity and 
steroid regulation123 might affect the overall pharma-
cokinetics of the drugs between the sexes124. Supporting 
this hypothesis, one study has shown that the effects of 
donepezil and rivastigmine are modulated by oestrogen 
receptor 1 (ESR1) genotype117.

In a 2017 systematic review of sex and gender dif-
ferences in 48 randomized clinical trials of three cho-
linesterase inhibitors (donepezil, galantamine and 
rivastigmine) and memantine, including a total of 20,688 
patients113, only two studies investigated sex differences 
in safety and efficacy; these studies found no effects for 
donepezil113. Similarly, a second systematic study found 
an almost complete lack of data on sex differences in 
the adverse effects of cholinesterase inhibitors in clin-
ical trials125. As an example, none of 16 clinical trials 
of donepezil reported sex-​stratified analysis of adverse 
events125. The small proportion of studies that exam-
ined sex differences shows that a thorough examination 
of sex differences seen with currently used, second-​
generation cholinesterase inhibitor treatment remains 
to be performed114.

Treatment of neuropsychiatric symptoms
In the National Alzheimer’s Coordinating Center 
(NACC) cohort in the USA and the Medication use and 
Alzheimer’s disease (MEDALZ) cohort in Finland126, 
women with AD were more likely than men to be 
users of antidepressants and anxiolytics. This result has 
been replicated in a UK-​based study in which primary 
care records of 68,061 community-​dwelling dementia 
patients were analysed127. Such differences in pharma-
cological regimens, which probably stem from the sex-​
specific psychiatric symptoms described above, might 
be an additional factor contributing to the clinical het-
erogeneity between men and women with AD in the 
context of polytherapy (the use of multiple medications 
at the same time, which is very common among elderly 
patients128). In fact, different combinations of drugs 
might result in sex-​specific profiles of drug interactions 
and drug metabolism. The need for sex-​dependent dose 
adjustment due to different safety profiles between men 
and women could be relevant in clinical practice and 
in ongoing clinical trials, and this area deserves further 
investigation.

Interventions under investigation
Few data are available on sex differences in recently 
completed phase III clinical trials of pharmacological 
compounds against mild-​to-moderate AD. In the case of 
the γ-​secretase inhibitor semagacestat, sex-​specific analysis 
was performed in phase I tolerability studies (in which 

Box 4 | Definitions of sex and gender

In this Review, we apply the following definitions to the 
terms ‘sex’ and ‘gender’. Important to note is that sex and 
gender, although distinct terms that do not necessarily 
overlap, strongly interact to shape an individual’s body 
and predisposition to disease.

Sex
Sex refers to the biological characteristics (primary and 
secondary) that differentiate female from male. Primary 
sex characteristics are genetically determined 
morphological traits (such as external genitalia) arising 
from the expression of sex chromosomes (XX for female 
and XY for male). Sex also encompasses phenotypic traits 
that are typical of males and females (such as breast 
development in women), which are driven by the effects 
of genetically determined or exogenous gonadal 
hormones159.

Gender
Gender refers to the socially determined meaning of 
being a man or a woman, which shapes the definition of 
feminine and masculine behaviours, products, 
technologies, environments and knowledge in a 
particular society. The social and cultural dimension of 
gender contains the construction of culturally imposed 
behavioural and temperamental traits considered 
appropriate for males and females160, including gender 
norms, roles, stereotypes and inequalities, which 
influence factors such as education, occupation 
and income161.
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no differences in pharmacokinetics and dynamics were 
observed129). However, stratification of efficacy and 
safety data by sex is absent from the report of phase 
III results106. Similarly, sex differences in pharmacody-
namics were studied in the phase II trial of the anti-​Aβ 
monoclonal antibody solanezumab, which indicated 
slight differences in peripheral volume of distribution 
between men and women130; however, effects of sex 
were not analysed in the phase III trial108. Likewise, to 
the best of our knowledge, no sex-​specific data were 
reported for phase III clinical trials of the anti-​Aβ mon-
oclonal antibody bapineuzumab109 or the β-​secretase 1 
inhibitor verubecestat107.

In all of these studies, men and women were repre-
sented equally and balanced across placebo and verum 
groups. The published data of these trials were sex-​
adjusted, and the protocols for trials of solanezumab, 
semagacestat and verubecestat (which were published as 
supplementary material in the original reports) included 
subgroup analysis by ‘gender’. However, stratification of 
data by sex and the interaction of sex with the main out-
comes have not yet been presented to our knowledge. 
Adjusting the groups by sex without studying interac-
tions of sex with efficacy and safety can obscure impor-
tant differences in treatment outcomes between men 
and women. After careful stratification of data by sex, 
differences in the efficacy and safety between the sexes 
became evident for several drugs (including propranolol, 
zolpidem, digoxin, tissue plasminogen activator, warfarin 
and aspirin131), with high impact in clinical practice13,132.

Sex differences in efficacy were assessed in a second-
ary analysis of a phase II clinical trial of intranasal insu-
lin in individuals with aMCI133. The analysis revealed 
a significant overall modulation of treatment outcome 
by sex: the effects of treatment on delayed story recall 
were greater for men than for women, and the effects 
on activities of daily living were greater for women than 
for men133.

Several interventional studies of the effects of life-
style modification on AD prevention have been com-
pleted in the past few years, such as the Finnish Geriatric 
Intervention Study to Prevent Cognitive Impairment 
and Disability (FINGER)134 and Multidomain Alzheimer 
Preventive Trial (MAPT)135 studies. However, as for 
many studies of pharmacological treatments, no data 
stratification by sex or analysis of interactions between 
sex and outcomes are available for these studies to 
our knowledge.

Sex–genotype interactions in drug response
The treatment effects of some cholinesterase inhibitors 
are modulated by APOE genotype in a sex-​dependent 
manner112,136. Among women treated with tacrine, those 
who carried the APOE*ε4 allele had a lesser response to 
treatment than women with other APOE genotypes and 
exhibited minimal difference from the corresponding 
placebo control group136. By contrast, treatment outcome 
was not affected by APOE genotype in men136.

Sex–APOE interactions were also reported in 
observational and prospective studies that examined 
the effect of hormone replacement therapy (HRT) on 
long-​term cognitive status and AD risk in postmeno-
pausal women137. In studies in which HRT prevented 
cognitive decline and AD incidence overall, subgroup 
analysis revealed that APOE*ε4 women carriers ben-
efited the least from treatment138–140. In one study in 
which HRT was not protective against cognitive decline, 
cognitive status worsened in APOE *ε4 carriers upon 
HRT141. However, no interaction between APOE gen-
otype and HRT was found in the Cache County pro-
spective study142 or in a randomized controlled trial that 
was specifically designed to test the efficacy of HRT for 
prevention of cognitive decline in postmenopausal 
women over the course of 4 years143, so the available 
evidence is inconclusive. An incomplete understand-
ing of the interactions between drugs and genotype 

Box 5 | Sex differences in animal models of AD — similarities to clinical data and limitations

Poorer cognitive performance and earlier onset of deficits in female transgenic (Tg) mice than in male Tg mice have been 
extensively characterized in the 3xTg line and reported in other models, including the APP–PS1, the APP–PS1–dE9 and 
the Tg2576 models (ref.162).
In contrast to clinical observations, in these models higher amyloid load is observed in aged-​matched female APP-​Tg 

mice than in male mice162–164. In mice with equal amyloid burden, females had lower cognitive scores and increased 
neurodegeneration compared with males165,166. The greater susceptibility to amyloid pathology in females might be 
mediated by tau; in fact, double Tg female mice expressing mutated amyloid precursor protein and human tau were 
found to be more vulnerable to Aβ− and injury-​induced tangle degeneration167,168. However, studies of the effect of sex on 
tau hyperphosphorylation in single tau-​Tg models have produced contradictory results, with some reports indicating 
higher levels of pathology in male Tg mice169, and others indicating higher levels in females167,170. The possibility that sex 
modulates tau phenotype differently across various tau-​Tg models, according to the mutation expressed (P301S169 and 
P301L167,170), remains to be tested.
A clear effect of sex has been demonstrated in Apoe*ε4 mice, in which only female mice exhibit cognitive impairments 

and present with faster rates of decline than males171,172, possibly owing to a lower density of presynaptic elements77,173. 
However, mice produced by crossing APP-​Tg mice with Apoe*ε4 knock-​in mice do not fully reproduce the sex differences 
seen in human studies, especially with regards to cerebral microbleeds, which are more common among men than 
women with Alzheimer disease (AD) but more common among female Tg mice174.
At least two caveats exist when modelling AD-​like sex differences with Tg mice. First, the longitudinal effects of sex on 

brain atrophy might be hard to reproduce in mice that live up to 2–3 years, especially in pure APP models, which lack 
overt neurodegeneration. Second, menopause, with its gradual progression, altered pattern of production of steroid 
hormones and complex compensatory changes, does not occur in the normal lifespan of mice. Thus, the choice of animal 
models for studying AD-​like sex differences has to be carefully considered.
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might explain some of the controversial results of 
HRT trials (Supplementary Box 2). Future studies are 
needed to investigate the interaction of APOE genotype 
with AD onset (rather than generic cognitive decline) 
after treatment with HRT; these studies should involve 
long-​term follow-​up and earlier administration of HRT 
after menopause.

Finally, a study of intranasal insulin in individuals 
with aMCI has identified a significant sex–genotype 
interaction that affects treatment response. Among 
women who received a dose of 40 international units, 
cognitive performance worsened in APOE*ε4 carriers, 
whereas performance in men carriers who received the 
same dose improved133.

Conclusions
Sex differences in the clinical phenotype and progression 
of AD have been reported, indicating that women are 
protected relative to men at the prodromal phases but 
later exhibit steeper cognitive decline and higher rates 
of brain atrophy. Evidence for sex-​specific susceptibility 
to the effects of the APOE*ε4 allele and to cardiovascu-
lar risk factors is mounting, and effects of sex–genotype 
interactions on responses to HRT and cholinesterase 
inhibitors have been reported.

Taken together, the cumulative evidence indicates 
that sex is an important factor in phenotypic variability 
in AD and should not be neglected in clinical practice 
or in preclinical studies. The analysis and reporting of 
sex differences in clinical and preclinical studies need 
to be substantially improved to generate evidence that 
is robust enough to inform clinical practice and policy 
changes (Box 6).

Although sex differences in any given variable might 
be small to moderate, the intricate network of sex inter-
actions should be taken into account when designing 
predictive models for disease prevention, diagnosis 
and treatment response. We propose that large-​scale, 
population-​based screenings — including compre-
hensive AD risk assessment, biomarker collection and 
genetic stratification — should be performed. This 
screening would enable disease models to be generated 
on the basis of big data analysis that takes into account 
individual variability, including sex as well as genetic, 
epigenetic, biomarker, phenotypic, lifestyle and psycho-
social characteristics, leading to the identification of 
subgroups of individuals at risk and patients144,145 (Fig. 2). 
In 2017, the APMI and the APMI cohort programme 
were launched to stimulate such a paradigm shift 
towards precision medicine and precision pharmacology 

Box 6 | Recommendations for future studies

Reporting
•	Development of best-​practice guidelines for analysis and reporting of sex differences.

•	Routine stratification of data by sex and analysis of sex interactions (instead of statistically controlling for sex) in 
preclinical and clinical studies.

•	Meta-​analysis of sex differences across multiple clinical studies to confirm or refute the sex differences identified in 
single studies.

•	Publication of sex and gender studies with negative results to avoid publication bias.

•	Adjust data for cardiovascular, cerebrovascular and pregnancy-​related comorbidities.

•	Stratify data by menopausal state of women, if possible.

Biomarkers
•	Examine the sensitivity of neuropsychological tests for detecting sex-​specific cognitive impairments in preclinical 
Alzheimer disease (AD).

•	Perform secondary analysis of existing longitudinal data sets of biomarkers (including tau accumulation via PET tracers 
and hypometabolism via FDG–PET) and their relationship with clinical symptoms and progression.

•	Re-​examine cut-​off values for diagnostic biomarkers according to sex.

Risk factor profiles
•	Study sex-​specific predictors in large, longitudinal data sets.

•	Design risk scores for AD that take into consideration sex, sex differences in vascular risk factors, sex-​specific risk 
factors and genetic predisposition.

•	Consider gender differences in the analysis of possible psychosocial risk factors and moderators.

•	Consider sex-​specific guidelines for AD prevention.

Clinical trials
•	Analysis and publication of safety and efficacy data (outcome and responder analyses) stratified by sex in clinical trial 
protocols (at all stages).

•	Stratification by menopausal state if data are available.

•	Sex-​specific pharmacogenomic studies.

•	Ensure enrolment of women in clinical trials.

Preclinical and drug-​development research
•	Use male and female experimental animals and ensure studies have sufficient power to report sex-​specific differences.

•	Use models that mimic AD-​like neurodegeneration and menopause if the research question is focused on sex differences.
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Fig. 2 | Implications of AD sex differences for clinical practice. We propose that large-​scale population-​based 
screening for the early diagnosis of Alzheimer disease (AD) should be performed, including comprehensive assessment of 
AD risk factors. Analysis of the big data produced, including neuroimaging, biological, clinical and genetic data, will enable 
disease models to be generated for the stratification of subsets of individuals at risk. This generation of models will be a 
crucial step for the implementation of customized, genetically stratified, biomarker-​guided precision medicine 
approaches. Sex will be a crucial factor in the generation of comprehensive and predictive disease models as well as on the 
roadmap to pave disease-​modifying therapies through the precision pharmacology approach for drug research and 
development17,175. Thus, sex-​sensitive strategies for prevention, diagnosis, prognosis and treatment of AD are likely to be 
required in the design of clinical trials and in clinical practice. Colours indicate distinct disease models and the patients 
that fit these models.
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